
A FACILITY AND ARCHITECTURE FOR AUTONOMY RESEARCH

Greg Pisanich, Lorenzo Flückiger, and Christian Neukom
QSS Group Inc., NASA Ames Research Center

Moffett Field, CA

Abstract

Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large
gap between autonomy software at the research level and software that is ready for insertion into near-term space
missions. The Mission Simulation Facility (MSF) will bridge this gap by providing a simulation framewo rk and
suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers
of autonomy software to test their models in a high-fidelity simulation and evaluate their system’s performance
against a set of integrated, standardized simulations.

The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on
top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity
models, allows mixing simulation components from various computing platforms and enforces the use of a
standardized high-level interface among components. The components needed to achieve a realistic simulation can
be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior
(robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic
components in these areas but allows users to plug-in easily any refined model by means of a communication
protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures
that all the simulation models share the same information.

Biography

Greg Pisanich is a Technical Area Liaison for the QSS Group Inc. within NASA Ames Research Center’s Code IC
and is Project Manager of the Mission Simulation Facility. He holds Master’s degrees in Aeronautical Science from
Embry Riddle Aeronautical University and Computer Engineering from Santa Clara University. His background
and interests include aviation, unmanned aviation systems (UAVs), simulation, robotics, autonomy, cognitive
modeling, and human factors.

Lorenzo Flückiger received his Diploma in Microengineering from the Swiss Federal Institute of Technology,
Lausanne (EPFL) in 1994. He continued to work as a research assistant at EPFL, where he developed a testbed for
endoscopic surgery training with virtual environments. He received his PhD also at EPFL in Nov.1998; his research
focused on the development of new interfaces for robot manipulators using virtual reality. As an International
Fellow at the NASA Ames Research Center in 1999, he integrated a force-feedback device within Ames robotic
planetary interfaces. Lorenzo is currently a research lead developing simulation environments for autonomy in
robotics with the QSS Group Inc. at NASA Ames.

Christian Neukom works for QSS Group Inc. as a research scientist at the NASA-Ames Research Center. He
received his Ph.D. at UC Berkeley and his B.S. from Fairleigh Dickinson University, Rutherford. His background
and interests include cognitive and human performance modeling and more recently the field of robotics and
autonomy.

A FACILITY AND ARCHITECTURE FOR AUTONOMY RESEARCH

Greg Pisanich, Lorenzo Flückiger, and Christian Neukom
QSS Group Inc., NASA Ames Research Center [gp@email.arc.nasa.gov]

Moffett Field, CA

INTRODUCTION

Autonomy is a key enabling factor in the advancement
of the remote robotic exploration. Such systems will
need to demonstrate high levels of autonomy and
adaptability to accomplish their tasks without
continuous human control or intervention (Washington
et. al, 1999).

In order to accelerate the development of this
technology, NASA initiated the Intelligent Systems
(IS) program managed out of the Ames Research
Center. In addition to sponsoring research in
autonomous systems and algorithms, they also had the
foresight to initiate the development of simulation
resources, tools and facilities.

Commercial software tools developed for industrial
robot simulation have been available for years, but
autonomous systems researchers have been unable to
take advantage of these tools because they are not
flexible enough to be able to represent newly designed
robotic systems evolving in unstructured
environments.
The result has been that each research lab has had to
develop its own simulator. Because of the complexity
and time required for their development, such
simulators have usually been oriented towards “block-
world” models (answering most needs while keeping
simplicity). These tools are useful for experimenting
with robotic autonomy, but are not suitable for
planetary missions due to their 2D world model and
limited sensors.

At the same time, sophisticated simulators have been
developed within research laboratories to address
specific problems such as robot dynamics (Yen, Jain,
& Balaram, 1994) or instrument and environment
modeling (Thompkins, 1999). These tools offer highly
accurate models but are oriented towards engineering
design or mission-ready simulation. Consequently,
even though many high fidelity models exist, they are
difficult to combine into an integrated simulation.
Typically these tools are tied to a specific operating
system or comp uter language and are not designed for
applications outside of their nominal scope.
The Mission Simulation Facility (MSF) project was
initiated to bridge this gap. This will be achieved
through the development of the Mission Simulation

Toolkit (MST), a software package comprising 1) a
framework for connecting and synchronizing
distributed software models, 2) generic interfaces
abstracted from the transport layer, and 3) a set of basic
components required for a simulation.

DEVELOPMENT GOALS

We have established several goals that the Mission
Simulation Toolkit must achieve:

• Provide a software framework addressing

multiple levels of autonomy simulation.
• Allow easy integration of autonomy modules and

tools into the simulation.
• Be easily extensible to mult iple robotic platforms

and environments.
• Allow interchangeability of real hardware and

simulated components.
• Be easily distributable to external groups (NASA

Sites, Educational, and Research Facilities).
• Provide varying levels of simulation fidelity.

SCOPE AND APPLICATIONS

The MST architecture has been designed to support
multiple mission platforms (e.g. planetary robots,
spacecraft, underwater vehicles), with the initial focus
on planetary rovers.

MSF Transport Layer

Analysis ToolsInstrument ModelsAutonomous Software

Kinematics Model

Joints

Body

Wheels

Terrain

Constraints

Terrain Model

MSF Interfaces

Components

Resources Model

Generic Rover

etc.

Figure 1. Overview of the Mission Simulation Toolkit

The components needed for a rover simulation would
include a terrain model, site information (such as
coloration and mineral composition), an environment
model (sun position, lighting, temperature, etc), and a
rover including a kinematic model and on-board
sensors, and several scientific instruments. It is up to
the user to decide what granularity of models best suits
the purpose of his simulation.
For example, a user who is concerned primarily with
collecting scientific data may not require a
sophisticated rover model because he may not care how
the rover gets from one point of interest to another. On
the other hand, a user who is developing a trajectory
generator may want to control the individual wheels of
a rover. For this reason the MST provides both high
and low level interfaces to a number of standard
models.
This dual level interface is also needed to support a
variety of robot architectures. Since very different
approaches currently exist, see (Coste-Maniere &
Simmons, 2001) for examples, the MST must provide
an interface generic enough to equally support
hierarchical, behavioral or hybrid robot architectures.
Figure 1 shows the concepts of the MST distributed
simulation relying on a common communication
framework to connect models and autonomy software.

DISTRIBUTED ARCHITECTURE

The MST architecture is derived from two main
requirements: to support distributed simulation on
multiple platforms and to ensure extensibility through
an open architecture.

Multiple Platform Support

Users of the MST (autonomy developers) typically
develop their tools in a variety of environments, for
example, a LISP program under Solaris on a Sun
workstation or a C++ program under Linux on an Intel
PC. Target systems for the autonomy software (the
rover control software) may also be developed on
different operating systems and hardware platforms.
Such software could for instance rely on a particular
flavor of Linux running on a PC-104 Pentium board, or
could be a dedicated embedded system running
VxWorks. The MSF project does not intend to develop
all the simulation components but rather will take
advantage of existing tools. To minimize the
adaptation requirements, each particular software
component should be usable by the MST on the original
platform for which it was developed.

Open Architecture

The MST is a general-purpose testbed for mission
simulation rather than a specific simulator, which
implies that different sets of components will be used
for different scenarios or different domains. For
instance, one might use a kinematics model for a rover
and a fluid dynamics model for an underwater vehicle.
In addition, a component should be usable in multiple
scenarios, which means that the same rover kinematics
model could be used for various rovers with particular
payloads operating in different environments. Finally,
it should be possible to replace a component of a
specific type with another that performs the same
function but at a different level of fidelity. A simple
kinematics rover simulator could be adequate to test
high-level autonomy concepts such as path planning,
while a dynamics rover simulator including accurate
soil-wheel interactions may be required to test an
autonomous control system for the mobility of the
rover. It is therefore essential that the MSF define clear
interfaces between the components to facilitate the
exchange of components included in the MST with
those developed at other research institutions.

A way to satisfy the above requirements is to have a
distributed architecture where components
communicate with each other using a common transport
layer. The MST is built on top of the standardized High
Level Architecture (HLA), which is an architecture for
simulation reuse and inter-operability developed by the
Defense Modeling and Simulation Office (DMSO). The
MST currently uses the Runtime Infrastructure (RTI), a
software implementation of HLA (Kuhl, Weatherly, &
Dahmann, 2002) freely distributed by DMSO. The
HLA/RTI provides the MST the following services:

• Multi-platform support: IRIX, Solaris, Linux,
Win32 and VxWorks

• C++ and Java bindings
• Choice of transport protocol: TCP (reliable)

or UDP (fast)
• Publish/Subscribe scheme
• Communication through objects or messages
• Various time management schemes for

simulation synchronization

To facilitate the integration of components in an
MST-based simulation, an abstraction layer has been
developed on top of the HLA, the Federate ToolKit
(FTK). FTK is responsible for the integration of
communication entities with the Runtime Infrastructure.
The communication objects and messages defining the
MST interface are easily designed using the Unified
Modeling Language (UML). All the necessary C++
code to use these communication entities is generated
automatically.

MSF Transport Layer

Environment
& Robotic
Databases

Sun
Location

Motor
Commands

/ States

Robot
Command /
States

Motor
Commands

/ States

3D Objects
Positions

Sensor
Commands /

Raw Data

Instruments
/ Processed
Data

Robot
Command /

States

Kinematics
Simulation

3D
Viewer

Planetary
System Model Power Ressource Model

Rover B: only high
level control

available

High Level Robot
Interface

Generic Rover

3D Objects
Positions

Power
Remaining

Consumers
Load

Instrument
Simulation

Rover Control
Software

Autonomous
Software

Rover A: complete
architecture available

Figure 2: MST simulation showing several components communicating through common interfaces.

Figure 2 provides an example of an MST-based
simulation with several interconnected components.
Two separate rover autonomy software executions are
participating in the simulation: The software in Rover
A is provided by a lab having a complete rover
architecture (and probably a real rover) from the high
level control down to the hardware control; the software
on Rover B comes from a lab working only on high
level autonomous algorithms and without hardware
control. When the Rover A software sends commands
to its actuators (e.g. motor1_start(speed, duration)), the
commands are routed to the simulator rather than to real
hardware. The kinematics simulator accepts such
commands and computes the behavior of the rover on
the terrain regarding these inputs. When Rover B
issues a high level command to its base controller (e.g.
roverB_moveto (position, obstacle-avoidance=on)), the
Generic Rover model catches this message and
produces motor commands for a simple model of a
rover, causing it to move from one location to another
while avoiding obstacles. These motor commands can
be processed by the same kinematics simulator used to
control Rover A. The same scheme is used when
controlling instruments, generalized as sensors in
Figure 2 (the figure does not show the full path of
information flow). In addition to the Kinematics and
Instruments models, a Power Resource model is
participating in the simulation. It monitors the load of

each actuator as well as the power generated by solar
panels and computes the power remaining in the rover’s
batteries. The power output of the solar panels depends
on the orientation of the solar panels relative to the sun.
The kinematics model provides the position of the
panels and the sun’s position is delivered by another
component computing the Ephemeris. This example
shows how different components are reusable for
different scenarios, and how the definitions of the
networked MST interfaces removes all the
dependencies between the components.

THE MISSION SIMULATION TOOLKIT

A first prototype of the Mission Simulation ToolKit
was demonstrated in June 2002. It is being evaluated
by autonomy researchers within NASA Ames and is
being applied to the development of contingent plan
execution. Figure 3. shows the components and
messages that make up this release. The following
paragraphs describe the software that are included in
this internal release :

Federate Tool Kit (FTK)

The federate tool kit is a set of C++ classes forming a
layer above HLA. The FTK classes simplify much of
the development overhead of HLA, which includes

MSF Transport Layer

Conditional
Executive

Virtual Robot

Wheel
Speed()

VIZ

Trajectory
GeneratorPower Model

JPL Terrain

Get Telemetry()
Get Power()

Object Position()
Object Orientation()
Take Image()

Motor Load ()

Battery Level()

Move To ()

Wheel Speed()
Completion()

Move To()
Take Image()

Object position()
Object Orientation()
Motor Load()

MSF Transport Layer

Conditional
Executive

Virtual Robot

Wheel
Speed()

VIZ

Trajectory
GeneratorPower Model

JPL TerrainJPL Terrain

Get Telemetry()
Get Power()

Object Position()
Object Orientation()
Take Image()

Motor Load ()

Battery Level()

Move To ()

Wheel Speed()
Completion()

Move To()
Take Image()

Object position()
Object Orientation()
Motor Load()

Figure 3. Components and messages of the June 2002 MST release.

tasks such as joining and exiting, and managing
attribute updates and attributes. The FTK also
maintains a local representation of the HLA simulation
for each component. The FTK objects have also been
developed enforce proper behavior of components in
the simulation: They abstract the developer from
operations and sequences in HLA that will ensure
proper interaction with other federation objects and the
federation as a whole.

UML2HLA

UML2HLA has been developed to map UML
communications entities to an HLA implementation.
UML2HLA has been implemented in the form of a
Visual Basic plugin to Rational Rose that inputs a MST
Communication Objects Hierarchy and provides two
outputs. The first is an HLA FED file that is used by
HLA to describe the allowable objects in the simulation
Federation. The second is a C++ class library that can
be used by a simulation developer to access those
objects.

These generalized classes are based on the FTK layer,
allowing the communications objects to inherit the
facilities for accessing the HLA transport layer
provided by FTK.

MST Communication Object Hierarchy

The Communications Hierarchy is described in the
form of UML (Unified Modeling Language) files. The
Communication Object Hierarchy describes a set of
objects that will exist in the simulation, their attributes,
and the communication messages that can be sent or
received by each object.

The Object Hierarchy is easily modified and expanded
to support additional objects or messages using any
UML tool. The Object Hierarchy as currently designed
is specialized for the simulation of Planetary Rovers,
however it can and will be expanded to support other
domains.

The conceptual communications objects are
implemented as a set of C++ classes using the
UML2HLA Process.

VIZ

The inclusion of the VIZ program module allows the
visualization of MST simulations. VIZ supports the
visualization of the terrain, the robot(s), and the output
of sensors such as cameras. VIZ also allows the
simulation developer to assess the progress and
operation of the robot using visual tools.

Figure 4. An MST simulation involving two rovers on simulated Martian terrain as visualized in VIZ.

The VIZ software was developed at NASA Ames. The
MST team has developed an HLA interface to VIZ that
allows it to interact with MST simulation components.
Figure 4 shows example output of the VIZ tool.

Terrain

The MST provides the capability of introducing terrain
models (consisting of DEM and albido) into the
simulation. The MST supplies several models that
were synthesized and generated by the JPL Super
Computing Group based on Martian data models. The
MST also maintains the capability of introducing and
using terrain data from measured (real) models.

Models

The MST currently provides models of systems and
processes that are representative of planetary robotic
systems. These include a 3D robot model, power
model, kinematic model, and robot movement
generator. The MST will be expanded to include
additional models, including sensors and instruments
(cameras, spectrometers), effectors (arms, booms) and
other subsystems.

USER GROUPS

We are developing the MST to support two different
user groups. Our use of a component architecture
should allow us to support both with minimal changes.

The first group involves primarily internal NASA
(Ames and JPL) researchers, including those that are
involved in the IS Program. This group is distinguished
by their need to use components that may be export
controlled or otherwise cannot be released outside of
NASA. These users would gain access to these
components from internal sources.

The second group includes users primarily external to
NASA, which would include educational and other
research institutions, including foreign groups. These
users would have access to a full range of components
that will have been developed with distribution in mind.
These components may have been developed internally
or be contributed by users of the MST. This group also
includes foreign students and researchers that may be
working within NASA. These users would be using the
MST to develop algorithms that don’t involve export-
controlled software.

RELEASE STRATEGY

The release of the MST will involve several
distributions and capabilities over a nominal 3-year
period. The releases should be scheduled to correspond
to the levels of capabilities and refinements to the MST
architecture and code.

The initial release of the MST will be to internal IS
researchers (NASA Ames and JPL) and no more than
three university groups. This release will be used as a
test of the robustness of the code and the distribution

process. We expect to learn a lot about how well we
have documented the release and what things are
missing or need to be added to the MST to help the
user. This release should be via a CD and is scheduled
for Winter 2002.

The second release will be to internal users and will be
capable of linking in export-controlled components.
This release is scheduled for Summer 2003.

The third major release of the MST will include
additional components and will be targeted at a larger
group of external users. These should include both US
and foreign universities and research groups. We
expect that this version may involve the sharing and
exchange of component modules between groups. It is
currently scheduled for Winter 2003.

During 2004, we will work to develop an open source
version of the MST, which may involve working with
an external group that focuses on this process. We
expect that this version may also be licensable by
commercial companies via the NASA Commercial
Technology Office. We also expect that this version
may allow users to download the MST core architecture
from an open source site and download other modules
from the sites of other MST affiliates. This release is
nominally scheduled for Winter 2004.

SUMMARY

There is currently a large gap between autonomy
software at the research level and software that is ready
for mission insertion. The Mission Simulation Facility
will bridge this gap by providing a simulation
framework and suite of simulation tools (the Mission
Simulation ToolKit) to support research in autonomy
for remote exploration. This system will allow
developers of autonomy software to test their models in
a high-fidelity simulation and evaluate their system’s
performance against a set of integrated, standardized
simulations.

ACKNOWLEDGEMENTS

This project is funded under the NASA Intelligent
Systems (IS) Program, which is managed by Butler
Hine.

The authors acknowledge the hard work and many
contributions of the other members of the MSF
development team: Michael Wagner and Laura Plice.

The authors would also like to acknowledge the use of
software, development contributions, and feedback
provided by Rich Washington (Conditional Executive)
and Larry Edwards (VIZ).

REFERENCES

Washington, R., Golden, K., Bresina, J., Smith, D. E.,
Anderson, C., and Smith, T. (1999). Autonomous
rovers for Mars exploration. In Proceedings of
The 1999 IEEE Aerospace Conference.

Tompkins, P., Stentz, A., and Whittaker, W.L. (2001).

Automated surface mission planning considering
terrain, shadows, resources and time. In
Proceedings of i-SAIRAS 2001.

Yen, J., Jain, A., and Balaram, J. (1999). ROAMS:

Rover Analysis, Modeling and Simulation. In
Proceedings of i-SAIRAS 1999, pages 249–254.

 Coste-Manière, E. & Simmons, R. (2001).

Architecture, the backbone of robotic systems. In
Proceedings of the ICRA 2001.

Kuhl, F., Weatherly, R., and Dahmann, J. (2000).

Creating Computer Simulation Systems: An
Introduction to the High Level Architecture.
Prentice Hall.

